Choose two of the following eight:

(1) Identify all sequences in Σ_2 which are periodic points of period 3 for σ. Which points lie on the same orbit? Repeat for periods 4 and 5.

(2) Let Σ' consist of all sequences in Σ_2 which never have two consecutive zeros (i.e. 0 is always followed by a 1).
 (a) Show that Σ' is a closed, invariant subset of Σ_2 under σ.
 (b) Show that periodic points are dense in Σ'.
 (c) Show that there is a dense orbit in Σ'.
 (d) How many fixed points are there for σ, σ^2 and σ^3 in Σ'?
 (e) (Optional) Find a recursive formula for the number of fixed points of σ^n in terms of the number of fixed points of σ^{n-1} and σ^{n-2}.

(3) Let $s \in \Sigma_2$. Define the stable set of s, $W_s(s)$, to be the set of sequences t such that $d(\sigma^i(t), \sigma^i(s)) \to 0$ as $i \to \infty$. Identify all of the sequences in $W_s(s)$.

(4) Consider the tent map on $[0, 1]$:
 $$T_2(x) = \begin{cases}
 2x & 0 \leq x \leq \frac{1}{2} \\
 2 - 2x & \frac{1}{2} \leq x \leq 1
 \end{cases}$$
 We would like to establish the symbolic dynamics of T_2, but first we must modify Σ_2. Notice there is an ambiguity at $x = \frac{1}{2}$ being both in I_0 and I_1. In fact, the itineraries of any $p/2^k$ will encounter this ambiguity. We therefore modify the sequence space Σ_2 so that $(s_0, s_1, ..., s_{k-1}c10)$ are identified for $c = 0$ or 1. Denote Σ_2 with this identification by $\tilde{\Sigma}$.
 (a) Prove that $S : I \to \tilde{\Sigma}$ is one-to-one, where $S(x)$ is the itinerary of x.
 (b) Prove that $\sigma \circ S = S \circ T_2$. (Since $S(x)$ was shown in class to be onto and continuous with continuous inverse, notice that this establishes a conjugacy with $(\tilde{\Sigma}, \sigma)$ and hence T_2 is chaotic.)
 (c) Given the above, is T_2 topologically conjugate to the quadratic map $f_\lambda(x) = 4x(1-x)$? Why or why not?

(5) A point p is called non-wandering for f, if, for any open interval J containing p, there exists $x \in J$ and $n > 0$ such that $f^n(x) \in J$. (Note that p itself may not return to J.) Let $\Omega(f)$ denote the set of non-wandering points for f.
 (a) Prove that $\Omega(f)$ is closed.
 (b) If f_λ is the quadratic map with $\lambda > 2 + \sqrt{5}$, show that $\Omega(f_\lambda) = \Lambda$, where Λ is the invariant Cantor set of f_λ.
 (c) Identify $\Omega(f_\lambda)$ for each $0 < \lambda \leq 3$.

(6) A point p is called recurrent for f if, for any open interval J containing p, there exists $n > 0$ such that $f^n(p) \in J$. Clearly all periodic points are recurrent.
 (a) Give an example of a non-periodic recurrent point for f_λ with $\lambda > 2 + \sqrt{5}$.
 (b) Give an example of a non-wandering point for f_λ which is not recurrent.